Analysis of Social Information Networks

Thursday February 24th, Lecture 6: Epidemics
Outline

* Continuous epidemics, “logistic model”
* Discrete epidemics, “graph”
* Epidemic algorithms
Dynamics of population growth
- reproduction
- access to resources (food)

\[\frac{dP}{dt} = rP \left(1 - \frac{P}{K}\right) \]

- \(r \): rate of reproduction,
- \(K \): # indiv. sustainable with available resources
Lemma: If dynamic system y satisfies $\frac{dy}{dt} = \frac{c}{f(y)}$

- Then for any t, we have $F(y(t))-F(y(0)) = c \cdot t$
- where F is a primitive function of f

Assume $r=K=1$ we have

$$\frac{d}{dt} P(t) = P(t)(1 - P(t))$$

- P satisfies lemma with $f(y) = 1/y + 1/(1-y)$
- Hence $P(t) = P(0) / (P(0) + (1-P(0)) e^{-t})$
Individual infection is persistent:
- Assume all infected individuals remain infectious
- $S \rightarrow I$ model (S for “Susceptible”, I for “Infected”)

Growth of infected populations (denoted by y):
- Reproduction rate: infection probability β
- Resources: non-infected nodes (e.g. $n-y$)

\[
\frac{dy}{dt} = \beta xy = \beta y(n - y) \quad y(t) = \frac{y(0)n}{y(0) + (n - y(0))e^{-\beta nt}}
\]
Assume that infection is temporary and recurrent
 - An infected node goes through an infectious period (equivalently, becomes non-infectious with rate γ)
 - After the period, it is again susceptible

Evolution of
\[
\frac{dy}{dt} = \beta y(n - y) - \gamma y
\]

- $\beta > \gamma$: endemics $\lim y = (1-\gamma/\beta)$
- $\beta < \gamma$: epidemics dies $\lim y = 0$
Assume that infection is temporary and transient
- An infected node goes through an infectious period (equivalently, becomes non-infectious with rate γ)
- After the period, it is removed (vaccinated or dead)

Evolution follows similar equation
- Infected individuals disappear: $\lim y = 0$
- Number of removed individuals $\lim z$ satisfies
 $$n\lim z = x(0) \exp(-\beta \lim z / \gamma)$$
Continuous epidemics: summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S→I</td>
<td>Everyone infected</td>
</tr>
<tr>
<td>S↔I</td>
<td>Depends on infection/recovery rate</td>
</tr>
<tr>
<td>S→I→R</td>
<td>No infectious node</td>
</tr>
</tbody>
</table>

Follows differential equation

- Initial conditions:
 Fraction already infected
- Outcomes depend on type
- Cvg exponentially fast
- Mean field limit of discrete
- No topology
Outline

- Continuous epidemics, “logistic model”
- Discrete epidemics, “graph”
- Epidemic algorithms
Infection only spreads along edges of a given graph
 - to account for connections closeness among nodes
Initial conditions: one node \(s \in V \) is infected
Challenges
 - Can a fraction be infected in a large graph?
 - What if some individuals are immune?
 - What is the speed of evolution of epidemics?
 - How does it depend on the properties of the graph?
Epidemic Model #1: $S \rightarrow I$

- **Model 1: broadcast**
 - Node infected at time t infects all its neighbors in $t+1$
 - Within time $D = \text{diam}(G)$, all nodes are infected

- **Model 2: gossip**
 - Node infects each neighbor with a given rate β
 - Eventually all nodes are infected within $O(D/\beta)$
 - What if rates are not constant? (see further analysis)
Epidemic model #2: $S \leftrightarrow I$

- Nodes follow neighbor contamination / recovery
 - Node $u \in V$ infectious ($X_u = 1$) or susceptible ($X_u = 0$)
 - Node u becomes infected with rate $\beta \cdot \sum_{v \in N(u)} X_v$
 - Node u recovers with rate $\gamma = 1$

- In a finite graph, all nodes eventually recover
 - Because ($X_u = 0 \ \forall u \in V$) is the only absorbing state
 - Different on infinite graphs (e.g. lattices, trees)
Can we recover fast from an epidemic?

Thm: \[P[X(t) \neq (0,\ldots,0)] \leq C \sqrt{N} \exp\left(t \cdot (\beta \rho - 1) \right) \]
- \(\rho(G) \): largest eigenvalue of \(G \)'s adjacency matrix
- \(C = \sqrt{\#\text{initial infected population}} \)

Bottom line: goes to zero very fast if \(\beta \rho < 1 \)
- complete graph: \(\rho(G) = n-1 \)
- hypercube: \(\rho(G) = \log_2(n) \)
- uniform random graph: \(\rho(G) \approx (n-1)p \) (if \(np = \omega(\log n) \))

The effect of network topology on the spread of epidemics,
A Ganesh, L Massoulié, D Towsley, IEEE Info\textsc{com} (2005)
Epidemic model #3: $S \rightarrow I \rightarrow R$

- **Model 1**: single infection attempts
 - Infected node infect neighbors with probability β
 - Many names: “Independent cascade model”, Reed-Frost epidemics
- **Model 2**: Random infectious period (normalized)
 - Similar (probability to spread is β) but dependencies!
- Eventually: no infectious nodes, fraction removed
What is the size of the removed fraction?

Thm: Assuming $\beta \rho < 1$, $E[|Y(\infty)|] \leq C \sqrt{N} / (1 - \beta \rho)$
- $\rho(G)$: largest eigenvalue of G’s adjacency matrix
- $C = \sqrt{\#\text{initial infected population}}$

If $\beta \rho < 1$ and $C = o(\sqrt{N})$, remove only negligible fraction

Proof based on expectation not on independence
- Similar results hold for model 2
Discrete epidemics: summary

Follow processes of infection

- **Initial conditions:** small set infected nodes

 Outcomes generally trivial

- **Speed or span depend on graph topology**
 (e.g. spectral analysis)

<table>
<thead>
<tr>
<th>Type</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow I$</td>
<td>Everyone infected</td>
</tr>
<tr>
<td>$S \leftrightarrow I$</td>
<td>No infectious nodes</td>
</tr>
<tr>
<td>$S \rightarrow I \rightarrow R$</td>
<td>No infectious node</td>
</tr>
</tbody>
</table>
Outline

* Continuous epidemics, “logistic model”
* Discrete epidemics, “graph”
* Epidemic algorithms
Replicated database maintenance
 - Different versions, many locations
 - How to handle communication? failures?

1987 “Epidemic alg., rumor spreading, gossip”
 - Do not maintain fixed communication topology
 - Contact a node unif., spread if one node has a copy

How many rounds S_n before rumor spreads to all
 - $S_n = (1+1/\ln(2)) \log(n) + O(1)$ in probability

Epidemic algorithms for replicated database maintenance,
A Demers et. al, ACM PODC. (1987)
How gossip compares to optimal?

- A binary tree:
 - Also takes time $O(\log(n))$, using $O(n)$ messages
 - Seems optimal in both ways, but prone to failure

- Gossip:
 - Time $O(\log(n))$ (optimal) and $O(n \log n)$ messages
 - In fact, unif. gossip requires at least $\omega(n)$ messages, and $\Omega(n \log\log(n))$ if no addresses are kept (the latter can be attained)

Randomized rumor spreading,
R Karp and C Schindelhauer and S Shenker and B Vocking, FOCS. (2000)
What if communication is constrained?
- Draw a graph between gossiping nodes $G=(V,E)$
- A node u can contact v only if (u,v) is an edge in E
- Let $P_{u,v}$ be the communication matrix between nodes
 * (u,v) not in E implies $P_{u,v} = 0$

Main questions:
- Which P ensures fast gossip dissemination?
- How does gossip dissemination compares to optimal?
Main result: If P irreducible, symmetric

- Let $T_{spr}^{\text{one}}(\varepsilon) = \sup_{v \in V} \inf \{ t : \Pr(S(t) \neq V | S(0) = \{v\}) \leq \varepsilon \}$

- We have $T_{spr}^{\text{one}}(\varepsilon) = O\left(\frac{\log n + \log \varepsilon^{-1}}{\Phi(P)} \right)$

- Where $\Phi(P) = \min_{S \subset V : |S| \leq n/2} \frac{\sum_{i \in S; j \in S^c} P_{ij}}{|S|}$
Depending on graph topology

- Let $\varepsilon = \Omega(1/n^a)$ for a given $a>0$

- Complete graph: $P_{u,v} = 1/n$; $\Phi(P) = 1/2$
 Already seen that $T_{\text{one spr}}(\varepsilon)$ is $O(\log n)$, which is optimal

- Ring: $P_{u, u+1} = 1/4$, $P_{u, u-1} = 1/4$, $P_{u, u} = 1/2$; $\Phi(P) \propto 1/n$
 $T_{\text{one spr}}(\varepsilon) = O(n \log n)$, optimal uses at least n steps

- α-expander, d-regular: $P_{u,v} = 1/2d$, $P_{u,u} = 1/2$; $\Phi(P) = \alpha/2d$
 $T_{\text{one spr}}(\varepsilon) = O(\log n)$, which is optimal
Two phases:
1. From $S(t) = \{v\}$ to $L-1$
2. From $L=\inf\{ t \mid \#S(t) > n/2 \}$ to $\#S(t) = n$

Ingredients of the proof:

a. Study evolution of conditional expectation $E[\#S(t+1) - \#S(t) \mid S(t)]$

b. Uses Markov inequality ($X\geq0 \Rightarrow P[X\geq a] \leq E[X]/a$)

c. For phase 1, need to rewrite as super-martingale
Epidemic algorithm: Summary

- Not far from SI epidemic spread
 - With emphasis on communications constraints
- Key property: graph conductance
- Many extensions:
 - Send a message from each node
 - Send a stream of messages
 - Compute average value
UP-COMING

* Proof of previous results
* Consequences on spread of epidemics