Analysis of Social Information Networks
Thursday February 17th, Lecture 5: Influence (2)

Outline

* 2003: The algorithmic view, ‘Exploiting Influence’
* 2010: effect of graph topology
 – Zoom on some recent results
A general algorithmic problem

* How to find the best initial seeding set S_0?
 - Maximizing the total spread, with a fixed size

* A more general model of neighbor influence
 - Assumes threshold t_v uniform in $[0;1]$ and
 v becomes active as soon as $t_v \leq g_v(X)$
 - as u becomes active, activates neighbor v with prob.
 $p_v(u, X)$, where $X = \{\text{nodes in } N(v) \text{ previously active}\}$
 - Special cases: Granovetter, Morris, Independent
 - If p order independent, the two models equivalent

Maximizing spread of influence

* Thm: Whenever p_v show diminishing return
 - There exists a simple polynomial algorithm
 computing S such that $f(S) \geq (1-1/e)f(S^*)$

 - Algorithm follows greedy “one node at a time” rule
 Do k times: $S \leftarrow S \cup \arg\max_v \{ f(S \cup \{v\}) - f(S) \}$

Maximizing the spread of influence through a social network,
Proof

* Three steps:
 1. Show that the result holds if \(f \) is submodular, i.e. \(S \subseteq T \) implies \(f(S \cup \{v\}) - f(S) \geq f(T \cup \{v\}) - f(T) \),
 2. Show \(f \) is submodular under this condition on \(p_v \),
 3. Finally, prove that each step is polynomial more involved (will be admitted here)

Step 1

* Thm: If \(f \) non-negative, non-decreasing, submodular
 - Then greedy algorithm provides (1-1/e) approximation of maximizing \(f(S) \) subject to \(|S| = k \).

 - Proof: First,
 \[
 f(S_{i+1}) \geq f(S_i) + \frac{1}{k} \cdot (f(T) - f(S_i))
 \]
 \[
 = \left(1 - \frac{1}{k}\right) f(S_i) + \frac{1}{k} \cdot f(T)
 \]
 which implies by recurrence,
 \[
 f(S_i) \geq (1 - (1 - \frac{1}{k})^i) \cdot f(T)
 \]

Step 2

* Key idea:
 – Propagation on edges \((u,v)\) in \(E\) are event chosen independently.
 – It is equivalent to study a network where these events are decided in advance (i.e., conditioning).

* Assuming that edges in \(E' \subseteq E\) propagates
 – \(f(S \mid E' \text{ propagates}) = \text{size of an union indexed by } S\)
 – \(f\) is a sum of submodular function, proving the result

Step 2: Independent Cascade

* Key idea:
 – It is equivalent to study a network where these events are decided in advance (i.e., conditioning).

* Example 1: (Indep. Cascades: \(p_v(u,X) = p_v(u)\))

* Assuming that edges in \(E' \subseteq E\) propagates
 – \(f(S \mid E' \text{ propagates}) = \text{size of an union indexed by } S\)
 – \(f\) is a sum of submodular function, proving the result
Step 2: Linear Threshold

* Key idea:
 - It is equivalent to study a network where these events are decided in advance (i.e., conditioning).
* Example 2: (Linear threshold: \(g_v(X) = \sum_{u \in X} p_{uv} \))
* A random graph: each node \(v \) at most one in-edge
 - With prob. \(p_{uv} \) this edges is \((u,v) \)
 - With prob. \(1 - \sum_{u \in \bar{V}} p_{uv} \) \(v \) has no incoming edge
* Key observation: BFS from \(S \) on this graph and influence dynamics are statistically equivalent

Step 3 (for your information)

* We need to show that finding the best node \(v \) to add to \(S \) can be done with polynomial steps
 - Brute force method: (1) simulate the infection \(m \) times, then (2) use empirical average to choose \(v \)
 - Concentration result: with probability \(1-\delta \), this yields a \((1-\varepsilon) \) approximation of \(v \) using \(m = (n/\varepsilon)^2 \ln(2/\delta) \)
 - Adapts approximation to show that this gives a \((1-1/e-\varepsilon) \) approximation
Summary

* Influence is prevalent:
 - Usually impacted by topology (cluster density) and local dynamics (critical mass vs. diminishing return)

* Generalization
 - Same result with renewed decision at each step.
 - Same result for the “linear threshold”
 \[g_v(X) = \sum_{u \in X} w_{uv} \]
 - Same result for any submodular function \(p \) and \(g_v \)

Impact of topology

- Test using small world rewired networks
- Non-monotonic behavior w.r.t. rewiring proba. \(P \)
- Empirical validation with real human subject

The Spread of Behavior in an Online Social Network Experiment, D Centola, Science (2010)

Cascade dynamics of complex propagation,
Impact of graph topology

* Intricate problems, results are recent!
* Random graph with arbitrary degree topology
 – Minimal size of infectious set has complex behavior
* Speed of propagation in
 – locally connected spreads faster (weak ties are weak)
 – High degree and expansion slow down propagation!

Diffusion and cascading behavior in random networks,
M. Lelarge, Preprint (2010)

The spread of innovations in social networks,