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The availability of social information networks connecting users together
through their online behaviors is a unique research opportunity for computer
scientists. This is not only because today many computing applications and
technologies learn to integrate them, but also because, for the first time, these
networks describing individuals are considered primarily as computational ob-
jects. Hence, in addition to its sheer “complexity” and apparent lack of struc-
ture, information on a social network is remarkable for the algorithm design
challenge that it poses: how to extract, exploit, and sometimes explain social
properties using the minimum amount of information exchange and computa-
tion.

This course is an introduction to the algorithmic methods that have been
shown to cope with the specific constraints of social information networks, and
form today the “toolbox” of social computing applications.

1 Motivation and Overview

A brief history: Social information networks, broadly defined, characterize
attributes of individuals (e.g., interests, sociological profile) and the structure
underlying their interactions (e.g., friendship, business relationship). Tradi-
tionally it always was a latent force of sociological studies, and an important
business factor in marketing, advertisement, and employment. In the 1990s,
descriptive data of large information network became gradually available. A
number of remarkable empirical observations, coupled with unified models to
describe them across various application domains, gave birth to a new branch
of natural physics. “Complexity” was put forward as their common denomina-
tor.

Social information networks are now, and for a decade, an object of com-

putational analysis. This analytical method claims that at the essence of un-
derstanding these networks lies the way simple algorithms (similar to computer
programs) are able to deduce from local information a global property that
would otherwise require complete knowledge. In other words, whenever exhaus-
tive enumeration is not cost-efficient or is simply infeasible (due to a lack of
global data, or its overwhelming size), the answer to the “complexity” afore-
mentioned lies in hidden structures that can be exploited by algorithms.
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Where are we know? Today, it is hard not to see the impact of social
information networks, for three reasons:

• The field and interest with these objects have grown with their sizes and
scope, and their (partial) availability. For a company like Facebook, stor-
ing and making available information networks relating a population com-
parable to the world’s two largest country is by itself an active area of
computer science research. For almost any large company, large data be-
comes a commodity, and its ability to use them an important competitive
factor.

• Whatever domains of applications where social information networks are
integrated with technology, they typically change best practice. Busi-
ness is conducted differently when the price or the service you receive
depends on your friends. Media and entertainment are almost entirely
redefined, incorporating contributions beyond the traditional content cre-
ator/consumer model. Public issues like health, environment, economics
and development are likely to quickly change as algorithms and computer
systems using social information networks are introduced.

• In response to these new challenges, original computational methods were
designed, together with a characterization of their result and speed. It
significantly extended our understanding of the “Complexity” of social
information network by revealing what any algorithms can and cannot
do. It also impacted in many ways how information is exploited for several
applications.

Objectives: This course is an introduction to the computational analysis of
social information network, with an emphasis on acquiring the set of theoretical
skills that allow to mathematically justify the design of algorithmic methods.
Examples where social informations are used by real systems will be given and
analyzed, with some discussion on their broader impact.

During this course, students are expected to acquire (and will be evaluated
on) the following set of skills:

• Relate a phenomenon to common dynamics observed and analyzed among
users of a social network dealing with information; develop a critical eye
towards future research topics.

• Formulate a problem dealing with social information in relation to ranking,
algebraic spectral methods, and optimization.

• Propose innovative solutions using simple distributed algorithms running
on top of social networks, with a mathematical justification of their con-
vergence.

In other words, if you wish to understand from first principles how search en-
gine and recommender systems find relevant information, how does information
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propagates over Facebook or Twitter, and what is the algorithmic potential of
using social information, this course will help you find the answers.

The following topics, although they are related and will be mentioned at
times, will not be covered or evaluated:

• Strategic and game theoretic aspects of social information networks.

• System principles to build and run large social networking services.

• Machine learning and Bayesian inference on social information networks.

If you wish to acquire a deep knowledge in any of these three topics (which are
covered in different lectures) this course may provide you with a good comple-
ment.

2 Detailed contents

The course is made of three parts

1. Introduction: The first lecture aims at getting yourself acquainted with
social information network and developing a critical eye towards research
in this domain.

2. Fundamentals: In a series of 7 lectures, the course will cover a series of
classical results that form the core of our current understanding of social
information network. Practice will be encouraged by homework.

3. Empirical studies and advanced topics: The last 6 lectures are devoted to
recent studies on online social networks (4 lectures) and some advanced
topics (2 lectures). By nature this part covers less mature material, which
are more prone to lead to a promising research direction. Highly interac-
tive, each lecture will be organized with a set of recent research papers and
a presentation and discussion where students will be expected to answer
some challenges and open ended questions.

2.1 Introduction

2.1.1 Thursday, January 20th: Introduction

The role of Social Information Networks today.
The “small-world” phenomenon, Weak-ties and homophily, and the efficiency

of decentralized search.
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2.2 Fundamentals

These are organized along four “trails”, corresponding to different computa-
tional aspect of social information network:

• Popularity (Trail 1): What is the popularity profiles exhibited by items
and nodes in a social or information network? Can we explain and exploit
them?

• Spread (Trail 2): How do opinions and behavior spread by influence be-
tween the nodes? Can we use this influence to one’s advantage?

• Epidemy (Trail 3): How do information or virus propagates along the
edges of a network? Can we design algorithm to leverage it?

• Structures (Trail 4): Given a data sets describing a social information
network, what are the underlying structures allowing to rank nodes, to
map them according to similarity, and to partition them? How can such
structure be extracted from large datasets?

2.2.1 Thursday, January 27th: Trail 1

Popularity and dynamics of reinforcement.

• The ubiquitous power law.

• How do power-laws build up by reinforcement, optimization, artefacts?

• Fragility of power law, inoculation. Addressing the long tail with replica-
tion.

2.2.2 Thursday, February 3rd: Trail 2, part 1/2

Cascading and the spread of behavior in social network

• Life under the influence

• Models of cascading behaviors

2.2.3 Thursday, February 10th: Trail 2, part 2/2

Maximizing the spread of influence

• A general model and conditions

• Hardness and approximation

2.2.4 Thursday, February 17th: Trail 3

Epidemic spread and algorithms

• How do virus and information spread as a function of topology?

• Aggregating information through gossip?
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2.2.5 Thursday, February 24th: Trail 4, part 1/3

Ranking between nodes

• Measure of importance.

• Spectral algorithms and their convergence.

2.2.6 Thursday, March 3rd: Trail 4, part 2/3

Assessing similarity between the nodes

• Collaborative filtering and recommendations.

• Spectral analysis of data

2.2.7 Thursday, March 10th: Trail 4, part 3/3

How to partition a network?

• Metric of community and heuristic algorithm.

• Spectral partitioning, and why it works.

2.3 Advanced topics

2.3.1 Empirical studies 1: Online social networks and their evolution

2.3.2 Empirical studies 2: Communities and their evolution

2.3.3 Empirical studies 3: User behaviors and interactions

2.3.4 Empirical studies 4: Content and social media

2.3.5 Advanced topic 1: Mobility and Space in social networks

2.3.6 Advanced topic 2: TBD

3 Logistics

Where and when? Thursday 2:10-4pm (w. 5mn pause at 3pm), room TBA

Who is teaching? Augustin Chaintreau (instructor), Zeinab Abbassi (TA).

Prerequisite? The course requires no other knowledge that simple discrete
probability, linear algebra and elementary graph theory. If you would like a
refresh before taking the course, you may consider review the following notions
which will be introduced.

• Homogeneous Markov Chain: Chap.1-3 in P. Bremaud, Markov chains:

Gibbs fields, Monte Carlo simulation, and queues (2010) Springer.
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• Graph Theory: Chap.1 in R. Diestel, Graph Theory (2010), Springer.

• Linear Algebra: Matrix, eigenvalues, eigenvectors.

Grading scheme: The evaluation will be based on:

• a mid-term exam which deals with the “Fundamentals” materials (30%)

• class participation (with presentation in the second half) (30%)

• a final project (research case study or topic review) (40%)

For organizational purpose, the division between presentations and projects
will depend on the enrollment. It will be finalized an announce on the third
course of the lectures.

Textbook, reading: There is no requisite reading before the course.
Unfortunately the topic covered in this course is not described in a textbook

at the graduate level. The book1 Networks, Crowds, and Markets: Reasoning

About a Highly Connected World, by D. Easley and J. Kleinberg may be used
as a very good introduction to this course (and other topics in the domain).
Relevant parts are I and IV-VI.

4 Additional resources & Full Bibliography

Related teaching

• Michael Kearns, U. Penn,

Networked Life, Spring 2004-2010,

http://www.cis.upenn.edu/ mkearns/teaching/NetworkedLife/

• Jon Kleinberg, Cornell U.,

The Structure of Information Networks, Fall 2007,

http://www.stanford.edu/class/cs224w/

• Dan Spielman, Yale U.,

Graphs and Networks, Fall 2007-2010,

http://www.cs.yale.edu/homes/spielman/462/

• David Kempe, USC,

Structure and Dynamics of Networked Information, Spring 2008,

http://www-bcf.usc.edu/∼dkempe/CS59908/index.html

• Jure Leskovec, Stanford,

Social and Information Network Analysis, Fall 2009-2010,

http://www.stanford.edu/class/cs224w/

1available at: http://www.cs.cornell.edu/home/kleinber/networks-book/
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works. Proceedings of the . . . , Jan 2009.
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[221] J Candia, M González, and P Wang. Uncovering individual and collective human
dynamics from mobile phone records. Journal of Physics A: . . . , Dec 2008.

[222] G Chowell, J Hyman, S Eubank, and C Castillo-Chavez. Scaling laws for the movement
of people between locations in a large city. Physical Review E, Dec 2003.

[223] D. J Crandall, Lars Backstrom, D Cosley, S Suri, D Huttenlocher, and Jon Kleinberg.
Inferring social ties from geographic coincidences. Proceedings of the National Academy
of Sciences, pages 1–6, Dec 2010.

[224] DJ Crandall, Lars Backstrom, D Huttenlocher, and Jon Kleinberg. Mapping the world’s
photos. Proceedings of the 18th international conference on World wide web, pages 761–
770, 2009.

[225] S Eubank, V Kumar, and M Marathe. Structural and algorithmic aspects of massive
social networks. SODA ’04 Proceedings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms, Dec 2004.
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